
cachetools
Release 5.3.0

Jan 22, 2023

Contents

1 Cache implementations 3
1.1 Extending cache classes . 6

2 Memoizing decorators 7

3 cachetools.keys — Key functions for memoizing decorators 11

4 cachetools.func — functools.lru_cache() compatible decorators 13

Python Module Index 15

Index 17

i

ii

cachetools, Release 5.3.0

This module provides various memoizing collections and decorators, including variants of the Python Standard Li-
brary’s @lru_cache function decorator.

For the purpose of this module, a cache is a mutable mapping of a fixed maximum size. When the cache is full, i.e. by
adding another item the cache would exceed its maximum size, the cache must choose which item(s) to discard based
on a suitable cache algorithm.

This module provides multiple cache classes based on different cache algorithms, as well as decorators for easily
memoizing function and method calls.

Contents 1

http://docs.python.org/3/library/functools.html#functools.lru_cache
http://docs.python.org/dev/glossary.html#term-mutable
http://docs.python.org/dev/glossary.html#term-mapping
http://en.wikipedia.org/wiki/Cache_algorithms

cachetools, Release 5.3.0

2 Contents

CHAPTER 1

Cache implementations

This module provides several classes implementing caches using different cache algorithms. All these classes de-
rive from class Cache, which in turn derives from collections.MutableMapping, and provide maxsize
and currsize properties to retrieve the maximum and current size of the cache. When a cache is full, Cache.
__setitem__() calls self.popitem() repeatedly until there is enough room for the item to be added.

In general, a cache’s size is the total size of its item’s values. Therefore, Cache provides a getsizeof() method,
which returns the size of a given value. The default implementation of getsizeof() returns 1 irrespective of its
argument, making the cache’s size equal to the number of its items, or len(cache). For convenience, all cache
classes accept an optional named constructor parameter getsizeof, which may specify a function of one argument used
to retrieve the size of an item’s value.

Note that the values of a Cache are mutable by default, as are e.g. the values of a dict. It is the user’s responsibility
to take care that cached values are not accidentally modified. This is especially important when using a custom
getsizeof function, since the size of an item’s value will only be computed when the item is inserted into the cache.

Note: Please be aware that all these classes are not thread-safe. Access to a shared cache from multiple threads must
be properly synchronized, e.g. by using one of the memoizing decorators with a suitable lock object.

class cachetools.Cache(maxsize, getsizeof=None)
Mutable mapping to serve as a simple cache or cache base class.

This class discards arbitrary items using popitem() to make space when necessary. Derived classes may
override popitem() to implement specific caching strategies. If a subclass has to keep track of item ac-
cess, insertion or deletion, it may additionally need to override __getitem__(), __setitem__() and
__delitem__().

currsize
The current size of the cache.

static getsizeof(value)
Return the size of a cache element’s value.

maxsize
The maximum size of the cache.

3

cachetools, Release 5.3.0

class cachetools.FIFOCache(maxsize, getsizeof=None)
First In First Out (FIFO) cache implementation.

This class evicts items in the order they were added to make space when necessary.

popitem()
Remove and return the (key, value) pair first inserted.

class cachetools.LFUCache(maxsize, getsizeof=None)
Least Frequently Used (LFU) cache implementation.

This class counts how often an item is retrieved, and discards the items used least often to make space when
necessary.

popitem()
Remove and return the (key, value) pair least frequently used.

class cachetools.LRUCache(maxsize, getsizeof=None)
Least Recently Used (LRU) cache implementation.

This class discards the least recently used items first to make space when necessary.

popitem()
Remove and return the (key, value) pair least recently used.

class cachetools.MRUCache(maxsize, getsizeof=None)
Most Recently Used (MRU) cache implementation.

This class discards the most recently used items first to make space when necessary.

popitem()
Remove and return the (key, value) pair most recently used.

class cachetools.RRCache(maxsize, choice=random.choice, getsizeof=None)
Random Replacement (RR) cache implementation.

This class randomly selects candidate items and discards them to make space when necessary.

By default, items are selected from the list of cache keys using random.choice(). The optional argument
choice may specify an alternative function that returns an arbitrary element from a non-empty sequence.

choice
The choice function used by the cache.

popitem()
Remove and return a random (key, value) pair.

class cachetools.TTLCache(maxsize, ttl, timer=time.monotonic, getsizeof=None)
LRU Cache implementation with per-item time-to-live (TTL) value.

This class associates a time-to-live value with each item. Items that expire because they have exceeded their
time-to-live will be no longer accessible, and will be removed eventually. If no expired items are there to remove,
the least recently used items will be discarded first to make space when necessary.

By default, the time-to-live is specified in seconds and time.monotonic() is used to retrieve the current
time.

cache = TTLCache(maxsize=10, ttl=60)

A custom timer function can also be supplied, which does not have to return seconds, or even a numeric value.
The expression timer() + ttl at the time of insertion defines the expiration time of a cache item and must be
comparable against later results of timer(), but ttl does not necessarily have to be a number, either.

4 Chapter 1. Cache implementations

cachetools, Release 5.3.0

from datetime import datetime, timedelta

cache = TTLCache(maxsize=10, ttl=timedelta(hours=12), timer=datetime.now)

expire(self, time=None)
Expired items will be removed from a cache only at the next mutating operation, e.g. __setitem__() or
__delitem__(), and therefore may still claim memory. Calling this method removes all items whose
time-to-live would have expired by time, so garbage collection is free to reuse their memory. If time is
None, this removes all items that have expired by the current value returned by timer.

popitem()
Remove and return the (key, value) pair least recently used that has not already expired.

timer
The timer function used by the cache.

ttl
The time-to-live value of the cache’s items.

class cachetools.TLRUCache(maxsize, ttu, timer=time.monotonic, getsizeof=None)
Time aware Least Recently Used (TLRU) cache implementation.

Similar to TTLCache, this class also associates an expiration time with each item. However, for TLRUCache
items, expiration time is calculated by a user-provided time-to-use (ttu) function, which is passed three argu-
ments at the time of insertion: the new item’s key and value, as well as the current value of timer().

from datetime import datetime, timedelta

def my_ttu(_key, value, now):
assume value.ttl contains the item's time-to-live in hours
return now + timedelta(hours=value.ttl)

cache = TLRUCache(maxsize=10, ttu=my_ttu, timer=datetime.now)

The expression ttu(key, value, timer()) defines the expiration time of a cache item, and must be comparable
against later results of timer().

Items that expire because they have exceeded their time-to-use will be no longer accessible, and will be removed
eventually. If no expired items are there to remove, the least recently used items will be discarded first to make
space when necessary.

expire(self, time=None)
Expired items will be removed from a cache only at the next mutating operation, e.g. __setitem__() or
__delitem__(), and therefore may still claim memory. Calling this method removes all items whose
time-to-use would have expired by time, so garbage collection is free to reuse their memory. If time is
None, this removes all items that have expired by the current value returned by timer.

popitem()
Remove and return the (key, value) pair least recently used that has not already expired.

timer
The timer function used by the cache.

ttu
The local time-to-use function used by the cache.

5

cachetools, Release 5.3.0

1.1 Extending cache classes

Sometimes it may be desirable to notice when and what cache items are evicted, i.e. removed from a cache to make
room for new items. Since all cache implementations call popitem() to evict items from the cache, this can be
achieved by overriding this method in a subclass:

>>> class MyCache(LRUCache):
... def popitem(self):
... key, value = super().popitem()
... print('Key "%s" evicted with value "%s"' % (key, value))
... return key, value

>>> c = MyCache(maxsize=2)
>>> c['a'] = 1
>>> c['b'] = 2
>>> c['c'] = 3
Key "a" evicted with value "1"

Similar to the standard library’s collections.defaultdict, subclasses of Cache may implement a
__missing__() method which is called by Cache.__getitem__() if the requested key is not found:

>>> class PepStore(LRUCache):
... def __missing__(self, key):
... """Retrieve text of a Python Enhancement Proposal"""
... url = 'http://www.python.org/dev/peps/pep-%04d/' % key
... with urllib.request.urlopen(url) as s:
... pep = s.read()
... self[key] = pep # store text in cache
... return pep

>>> peps = PepStore(maxsize=4)
>>> for n in 8, 9, 290, 308, 320, 8, 218, 320, 279, 289, 320:
... pep = peps[n]
>>> print(sorted(peps.keys()))
[218, 279, 289, 320]

Note, though, that such a class does not really behave like a cache any more, and will lead to surprising results when
used with any of the memoizing decorators described below. However, it may be useful in its own right.

6 Chapter 1. Cache implementations

CHAPTER 2

Memoizing decorators

The cachetools module provides decorators for memoizing function and method calls. This can save time when a
function is often called with the same arguments:

>>> @cached(cache={})
... def fib(n):
... 'Compute the nth number in the Fibonacci sequence'
... return n if n < 2 else fib(n - 1) + fib(n - 2)

>>> fib(42)
267914296

@cachetools.cached(cache, key=cachetools.keys.hashkey, lock=None, info=False)
Decorator to wrap a function with a memoizing callable that saves results in a cache.

The cache argument specifies a cache object to store previous function arguments and return values. Note that
cache need not be an instance of the cache implementations provided by the cachetoolsmodule. cached()
will work with any mutable mapping type, including plain dict and weakref.WeakValueDictionary.

key specifies a function that will be called with the same positional and keyword arguments as the wrapped
function itself, and which has to return a suitable cache key. Since caches are mappings, the object returned by
key must be hashable. The default is to call cachetools.keys.hashkey().

If lock is not None, it must specify an object implementing the context manager protocol. Any access to the
cache will then be nested in a with lock: statement. This can be used for synchronizing thread access to the
cache by providing a threading.Lock instance, for example.

Note: The lock context manager is used only to guard access to the cache object. The underlying wrapped
function will be called outside the with statement, and must be thread-safe by itself.

The decorator’s cache, key and lock parameters are also available as cache, cache_key and cache_lock
attributes of the memoizing wrapper function. These can be used for clearing the cache or invalidating individual
cache items, for example.

7

http://docs.python.org/dev/glossary.html#term-context-manager

cachetools, Release 5.3.0

from threading import Lock

640K should be enough for anyone...
@cached(cache=LRUCache(maxsize=640*1024, getsizeof=len), lock=Lock())
def get_pep(num):

'Retrieve text of a Python Enhancement Proposal'
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:

return s.read()

make sure access to cache is synchronized
with get_pep.cache_lock:

get_pep.cache.clear()

always use the key function for accessing cache items
with get_pep.cache_lock:

get_pep.cache.pop(get_pep.cache_key(42), None)

For the common use case of clearing or invalidating the cache, the decorator also provides a cache_clear()
function which takes care of locking automatically, if needed:

no need for get_pep.cache_lock here
get_pep.cache_clear()

If info is set to True, the wrapped function is instrumented with a cache_info() function that returns a
named tuple showing hits, misses, maxsize and currsize, to help measure the effectiveness of the cache.

Note: Note that this will inflict a - probably minor - performance penalty, so it has to be explicitly enabled.

>>> @cached(cache=LRUCache(maxsize=32), info=True)
... def get_pep(num):
... url = 'http://www.python.org/dev/peps/pep-%04d/' % num
... with urllib.request.urlopen(url) as s:
... return s.read()

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)

>>> get_pep.cache_info()
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

The original underlying function is accessible through the __wrapped__ attribute. This can be used for
introspection or for bypassing the cache.

It is also possible to use a single shared cache object with multiple functions. However, care must be taken that
different cache keys are generated for each function, even for identical function arguments:

>>> from cachetools.keys import hashkey
>>> from functools import partial

>>> # shared cache for integer sequences
>>> numcache = {}

>>> # compute Fibonacci numbers
>>> @cached(numcache, key=partial(hashkey, 'fib'))

(continues on next page)

8 Chapter 2. Memoizing decorators

cachetools, Release 5.3.0

(continued from previous page)

... def fib(n):

... return n if n < 2 else fib(n - 1) + fib(n - 2)

>>> # compute Lucas numbers
>>> @cached(numcache, key=partial(hashkey, 'luc'))
... def luc(n):
... return 2 - n if n < 2 else luc(n - 1) + luc(n - 2)

>>> fib(42)
267914296
>>> luc(42)
599074578
>>> list(sorted(numcache.items()))
[..., (('fib', 42), 267914296), ..., (('luc', 42), 599074578)]

@cachetools.cachedmethod(cache, key=cachetools.keys.methodkey, lock=None)
Decorator to wrap a class or instance method with a memoizing callable that saves results in a (possibly shared)
cache.

The main difference between this and the cached() function decorator is that cache and lock are not passed
objects, but functions. Both will be called with self (or cls for class methods) as their sole argument to
retrieve the cache or lock object for the method’s respective instance or class.

Note: As with cached(), the context manager obtained by calling lock(self) will only guard access to
the cache itself. It is the user’s responsibility to handle concurrent calls to the underlying wrapped method in a
multithreaded environment.

The key function will be called as key(self, *args, **kwargs) to retrieve a suitable cache key. Note that the
default key function, cachetools.keys.methodkey(), ignores its first argument, i.e. self. This has
mostly historical reasons, but also ensures that self does not have to be hashable. You may provide a different
key function, e.g. cachetools.keys.hashkey(), if you need self to be part of the cache key.

One advantage of cachedmethod() over the cached() function decorator is that cache properties such as
maxsize can be set at runtime:

class CachedPEPs(object):

def __init__(self, cachesize):
self.cache = LRUCache(maxsize=cachesize)

@cachedmethod(operator.attrgetter('cache'))
def get(self, num):

"""Retrieve text of a Python Enhancement Proposal"""
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:

return s.read()

peps = CachedPEPs(cachesize=10)
print("PEP #1: %s" % peps.get(1))

When using a shared cache for multiple methods, be aware that different cache keys must be created for each
method even when function arguments are the same, just as with the @cached decorator:

class CachedReferences(object):

(continues on next page)

9

cachetools, Release 5.3.0

(continued from previous page)

def __init__(self, cachesize):
self.cache = LRUCache(maxsize=cachesize)

@cachedmethod(lambda self: self.cache, key=partial(hashkey, 'pep'))
def get_pep(self, num):

"""Retrieve text of a Python Enhancement Proposal"""
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:

return s.read()

@cachedmethod(lambda self: self.cache, key=partial(hashkey, 'rfc'))
def get_rfc(self, num):

"""Retrieve text of an IETF Request for Comments"""
url = 'https://tools.ietf.org/rfc/rfc%d.txt' % num
with urllib.request.urlopen(url) as s:

return s.read()

docs = CachedReferences(cachesize=100)
print("PEP #1: %s" % docs.get_pep(1))
print("RFC #1: %s" % docs.get_rfc(1))

10 Chapter 2. Memoizing decorators

CHAPTER 3

cachetools.keys — Key functions for memoizing decorators

This module provides several functions that can be used as key functions with the cached() and
cachedmethod() decorators:

cachetools.keys.hashkey(*args, **kwargs)
Return a cache key for the specified hashable arguments.

This function returns a tuple instance suitable as a cache key, provided the positional and keywords arguments
are hashable.

cachetools.keys.methodkey(self, *args, **kwargs)
Return a cache key for use with cached methods.

This function is equivalent to hashkey(), but ignores its first positional argument, i.e. self when used with
the cachedmethod() decorator.

cachetools.keys.typedkey(*args, **kwargs)
Return a typed cache key for the specified hashable arguments.

This function is similar to hashkey(), but arguments of different types will yield distinct cache keys. For
example, typedkey(3) and typedkey(3.0) will return different results.

These functions can also be helpful when implementing custom key functions for handling some non-hashable argu-
ments. For example, calling the following function with a dictionary as its env argument will raise a TypeError,
since dict is not hashable:

@cached(LRUCache(maxsize=128))
def foo(x, y, z, env={}):

pass

However, if env always holds only hashable values itself, a custom key function can be written that handles the env
keyword argument specially:

def envkey(*args, env={}, **kwargs):
key = hashkey(*args, **kwargs)
key += tuple(sorted(env.items()))
return key

11

cachetools, Release 5.3.0

The envkey() function can then be used in decorator declarations like this:

@cached(LRUCache(maxsize=128), key=envkey)
def foo(x, y, z, env={}):

pass

foo(1, 2, 3, env=dict(a='a', b='b'))

12 Chapter 3. cachetools.keys — Key functions for memoizing decorators

CHAPTER 4

cachetools.func — functools.lru_cache() compatible
decorators

To ease migration from (or to) Python 3’s functools.lru_cache(), this module provides several memoizing
function decorators with a similar API. All these decorators wrap a function with a memoizing callable that saves up
to the maxsize most recent calls, using different caching strategies. If maxsize is set to None, the caching strategy is
effectively disabled and the cache can grow without bound.

If the optional argument typed is set to True, function arguments of different types will be cached separately. For
example, f(3) and f(3.0) will be treated as distinct calls with distinct results.

If a user_function is specified instead, it must be a callable. This allows the decorator to be applied directly to a user
function, leaving the maxsize at its default value of 128:

@cachetools.func.lru_cache
def count_vowels(sentence):

sentence = sentence.casefold()
return sum(sentence.count(vowel) for vowel in 'aeiou')

The wrapped function is instrumented with a cache_parameters() function that returns a new dict showing
the values for maxsize and typed. This is for information purposes only. Mutating the values has no effect.

The wrapped function is also instrumented with cache_info() and cache_clear() functions to provide infor-
mation about cache performance and clear the cache. Please see the functools.lru_cache() documentation
for details. Also note that all the decorators in this module are thread-safe by default.

@cachetools.func.fifo_cache(user_function)
@cachetools.func.fifo_cache(maxsize=128, typed=False)

Decorator that wraps a function with a memoizing callable that saves up to maxsize results based on a First In
First Out (FIFO) algorithm.

@cachetools.func.lfu_cache(user_function)
@cachetools.func.lfu_cache(maxsize=128, typed=False)

Decorator that wraps a function with a memoizing callable that saves up to maxsize results based on a Least
Frequently Used (LFU) algorithm.

@cachetools.func.lru_cache(user_function)

13

cachetools, Release 5.3.0

@cachetools.func.lru_cache(maxsize=128, typed=False)
Decorator that wraps a function with a memoizing callable that saves up to maxsize results based on a Least
Recently Used (LRU) algorithm.

@cachetools.func.mru_cache(user_function)
@cachetools.func.mru_cache(maxsize=128, typed=False)

Decorator that wraps a function with a memoizing callable that saves up to maxsize results based on a Most
Recently Used (MRU) algorithm.

@cachetools.func.rr_cache(user_function)
@cachetools.func.rr_cache(maxsize=128, choice=random.choice, typed=False)

Decorator that wraps a function with a memoizing callable that saves up to maxsize results based on a Random
Replacement (RR) algorithm.

@cachetools.func.ttl_cache(user_function)
@cachetools.func.ttl_cache(maxsize=128, ttl=600, timer=time.monotonic, typed=False)

Decorator to wrap a function with a memoizing callable that saves up to maxsize results based on a Least
Recently Used (LRU) algorithm with a per-item time-to-live (TTL) value.

14 Chapter 4. cachetools.func — functools.lru_cache() compatible decorators

Python Module Index

c
cachetools, ??
cachetools.func, 13
cachetools.keys, 11

15

cachetools, Release 5.3.0

16 Python Module Index

Index

C
Cache (class in cachetools), 3
cached() (in module cachetools), 7
cachedmethod() (in module cachetools), 9
cachetools (module), 1
cachetools.func (module), 13
cachetools.keys (module), 11
choice (cachetools.RRCache attribute), 4
currsize (cachetools.Cache attribute), 3

E
expire() (cachetools.TLRUCache method), 5
expire() (cachetools.TTLCache method), 5

F
fifo_cache() (in module cachetools.func), 13
FIFOCache (class in cachetools), 3

G
getsizeof() (cachetools.Cache static method), 3

H
hashkey() (in module cachetools.keys), 11

L
lfu_cache() (in module cachetools.func), 13
LFUCache (class in cachetools), 4
lru_cache() (in module cachetools.func), 13
LRUCache (class in cachetools), 4

M
maxsize (cachetools.Cache attribute), 3
methodkey() (in module cachetools.keys), 11
mru_cache() (in module cachetools.func), 14
MRUCache (class in cachetools), 4

P
popitem() (cachetools.FIFOCache method), 4
popitem() (cachetools.LFUCache method), 4

popitem() (cachetools.LRUCache method), 4
popitem() (cachetools.MRUCache method), 4
popitem() (cachetools.RRCache method), 4
popitem() (cachetools.TLRUCache method), 5
popitem() (cachetools.TTLCache method), 5

R
rr_cache() (in module cachetools.func), 14
RRCache (class in cachetools), 4

T
timer (cachetools.TLRUCache attribute), 5
timer (cachetools.TTLCache attribute), 5
TLRUCache (class in cachetools), 5
ttl (cachetools.TTLCache attribute), 5
ttl_cache() (in module cachetools.func), 14
TTLCache (class in cachetools), 4
ttu (cachetools.TLRUCache attribute), 5
typedkey() (in module cachetools.keys), 11

17

	Cache implementations
	Extending cache classes

	Memoizing decorators
	cachetools.keys — Key functions for memoizing decorators
	cachetools.func — functools.lru_cache() compatible decorators
	Python Module Index
	Index

