

cachetools — Extensible memoizing collections and decorators

This module provides various memoizing collections and decorators,
including variants of the Python Standard Library’s @lru_cache [http://docs.python.org/3/library/functools.html#functools.lru_cache]
function decorator.

For the purpose of this module, a cache is a mutable [http://docs.python.org/dev/glossary.html#term-mutable] mapping [http://docs.python.org/dev/glossary.html#term-mapping] of a
fixed maximum size. When the cache is full, i.e. by adding another
item the cache would exceed its maximum size, the cache must choose
which item(s) to discard based on a suitable cache algorithm [http://en.wikipedia.org/wiki/Cache_algorithms].

This module provides multiple cache classes based on different cache
algorithms, as well as decorators for easily memoizing function and
method calls.

Cache implementations

This module provides several classes implementing caches using
different cache algorithms. All these classes derive from class
Cache, which in turn derives from
collections.MutableMapping, and provide maxsize and
currsize properties to retrieve the maximum and current size
of the cache. When a cache is full, Cache.__setitem__() calls
self.popitem() repeatedly until there is enough room for the
item to be added.

In general, a cache’s size is the total size of its item’s values.
Therefore, Cache provides a getsizeof() method, which
returns the size of a given value. The default implementation of
getsizeof() returns 1 irrespective of its argument,
making the cache’s size equal to the number of its items, or
len(cache). For convenience, all cache classes accept an optional
named constructor parameter getsizeof, which may specify a function
of one argument used to retrieve the size of an item’s value.

Note that the values of a Cache are mutable by default, as
are e.g. the values of a dict. It is the user’s
responsibility to take care that cached values are not accidentally
modified. This is especially important when using a custom
getsizeof function, since the size of an item’s value will only be
computed when the item is inserted into the cache.

Note

Please be aware that all these classes are not thread-safe.
Access to a shared cache from multiple threads must be properly
synchronized, e.g. by using one of the memoizing decorators with a
suitable lock object.

	
class cachetools.Cache(maxsize, getsizeof=None)

	Mutable mapping to serve as a simple cache or cache base class.

This class discards arbitrary items using popitem() to make
space when necessary. Derived classes may override popitem()
to implement specific caching strategies. If a subclass has to
keep track of item access, insertion or deletion, it may
additionally need to override __getitem__(),
__setitem__() and __delitem__().

	
currsize

	The current size of the cache.

	
static getsizeof(value)

	Return the size of a cache element’s value.

	
maxsize

	The maximum size of the cache.

	
class cachetools.FIFOCache(maxsize, getsizeof=None)

	First In First Out (FIFO) cache implementation.

This class evicts items in the order they were added to make space
when necessary.

	
popitem()

	Remove and return the (key, value) pair first inserted.

	
class cachetools.LFUCache(maxsize, getsizeof=None)

	Least Frequently Used (LFU) cache implementation.

This class counts how often an item is retrieved, and discards the
items used least often to make space when necessary.

	
popitem()

	Remove and return the (key, value) pair least frequently used.

	
class cachetools.LRUCache(maxsize, getsizeof=None)

	Least Recently Used (LRU) cache implementation.

This class discards the least recently used items first to make
space when necessary.

	
popitem()

	Remove and return the (key, value) pair least recently used.

	
class cachetools.MRUCache(maxsize, getsizeof=None)

	Most Recently Used (MRU) cache implementation.

This class discards the most recently used items first to make
space when necessary.

	
popitem()

	Remove and return the (key, value) pair most recently used.

	
class cachetools.RRCache(maxsize, choice=random.choice, getsizeof=None)

	Random Replacement (RR) cache implementation.

This class randomly selects candidate items and discards them to
make space when necessary.

By default, items are selected from the list of cache keys using
random.choice(). The optional argument choice may specify
an alternative function that returns an arbitrary element from a
non-empty sequence.

	
choice

	The choice function used by the cache.

	
popitem()

	Remove and return a random (key, value) pair.

	
class cachetools.TTLCache(maxsize, ttl, timer=time.monotonic, getsizeof=None)

	LRU Cache implementation with per-item time-to-live (TTL) value.

This class associates a time-to-live value with each item. Items
that expire because they have exceeded their time-to-live will be
no longer accessible, and will be removed eventually. If no
expired items are there to remove, the least recently used items
will be discarded first to make space when necessary.

By default, the time-to-live is specified in seconds and
time.monotonic() is used to retrieve the current time.

cache = TTLCache(maxsize=10, ttl=60)

A custom timer function can also be supplied, which does not have
to return seconds, or even a numeric value. The expression
timer() + ttl at the time of insertion defines the expiration
time of a cache item and must be comparable against later results
of timer(), but ttl does not necessarily have to be a number,
either.

from datetime import datetime, timedelta

cache = TTLCache(maxsize=10, ttl=timedelta(hours=12), timer=datetime.now)

	
expire(self, time=None)

	Expired items will be removed from a cache only at the next
mutating operation, e.g. __setitem__() or
__delitem__(), and therefore may still claim memory.
Calling this method removes all items whose time-to-live would
have expired by time, so garbage collection is free to reuse
their memory. If time is None, this removes all
items that have expired by the current value returned by
timer.

	
popitem()

	Remove and return the (key, value) pair least recently used that
has not already expired.

	
timer

	The timer function used by the cache.

	
ttl

	The time-to-live value of the cache’s items.

	
class cachetools.TLRUCache(maxsize, ttu, timer=time.monotonic, getsizeof=None)

	Time aware Least Recently Used (TLRU) cache implementation.

Similar to TTLCache, this class also associates an
expiration time with each item. However, for TLRUCache
items, expiration time is calculated by a user-provided time-to-use
(ttu) function, which is passed three arguments at the time of
insertion: the new item’s key and value, as well as the current
value of timer().

from datetime import datetime, timedelta

def my_ttu(_key, value, now):
 # assume value.ttl contains the item's time-to-live in hours
 return now + timedelta(hours=value.ttl)

cache = TLRUCache(maxsize=10, ttu=my_ttu, timer=datetime.now)

The expression ttu(key, value, timer()) defines the expiration
time of a cache item, and must be comparable against later results
of timer().

Items that expire because they have exceeded their time-to-use will
be no longer accessible, and will be removed eventually. If no
expired items are there to remove, the least recently used items
will be discarded first to make space when necessary.

	
expire(self, time=None)

	Expired items will be removed from a cache only at the next
mutating operation, e.g. __setitem__() or
__delitem__(), and therefore may still claim memory.
Calling this method removes all items whose time-to-use would
have expired by time, so garbage collection is free to reuse
their memory. If time is None, this removes all
items that have expired by the current value returned by
timer.

	
popitem()

	Remove and return the (key, value) pair least recently used that
has not already expired.

	
timer

	The timer function used by the cache.

	
ttu

	The local time-to-use function used by the cache.

Extending cache classes

Sometimes it may be desirable to notice when and what cache items are
evicted, i.e. removed from a cache to make room for new items. Since
all cache implementations call popitem() to evict items from the
cache, this can be achieved by overriding this method in a subclass:

>>> class MyCache(LRUCache):
... def popitem(self):
... key, value = super().popitem()
... print('Key "%s" evicted with value "%s"' % (key, value))
... return key, value

>>> c = MyCache(maxsize=2)
>>> c['a'] = 1
>>> c['b'] = 2
>>> c['c'] = 3
Key "a" evicted with value "1"

Similar to the standard library’s collections.defaultdict,
subclasses of Cache may implement a __missing__()
method which is called by Cache.__getitem__() if the requested
key is not found:

>>> class PepStore(LRUCache):
... def __missing__(self, key):
... """Retrieve text of a Python Enhancement Proposal"""
... url = 'http://www.python.org/dev/peps/pep-%04d/' % key
... with urllib.request.urlopen(url) as s:
... pep = s.read()
... self[key] = pep # store text in cache
... return pep

>>> peps = PepStore(maxsize=4)
>>> for n in 8, 9, 290, 308, 320, 8, 218, 320, 279, 289, 320:
... pep = peps[n]
>>> print(sorted(peps.keys()))
[218, 279, 289, 320]

Note, though, that such a class does not really behave like a cache
any more, and will lead to surprising results when used with any of
the memoizing decorators described below. However, it may be useful
in its own right.

Memoizing decorators

The cachetools module provides decorators for memoizing
function and method calls. This can save time when a function is
often called with the same arguments:

>>> @cached(cache={})
... def fib(n):
... 'Compute the nth number in the Fibonacci sequence'
... return n if n < 2 else fib(n - 1) + fib(n - 2)

>>> fib(42)
267914296

	
@cachetools.cached(cache, key=cachetools.keys.hashkey, lock=None, info=False)

	Decorator to wrap a function with a memoizing callable that saves
results in a cache.

The cache argument specifies a cache object to store previous
function arguments and return values. Note that cache need not
be an instance of the cache implementations provided by the
cachetools module. cached() will work with any
mutable mapping type, including plain dict and
weakref.WeakValueDictionary.

key specifies a function that will be called with the same
positional and keyword arguments as the wrapped function itself,
and which has to return a suitable cache key. Since caches are
mappings, the object returned by key must be hashable. The
default is to call cachetools.keys.hashkey().

If lock is not None, it must specify an object
implementing the context manager [http://docs.python.org/dev/glossary.html#term-context-manager] protocol. Any access to the
cache will then be nested in a with lock: statement. This can
be used for synchronizing thread access to the cache by providing a
threading.Lock instance, for example.

Note

The lock context manager is used only to guard access to the
cache object. The underlying wrapped function will be called
outside the with statement, and must be thread-safe by itself.

The decorator’s cache, key and lock parameters are also
available as cache, cache_key and
cache_lock attributes of the memoizing wrapper function.
These can be used for clearing the cache or invalidating individual
cache items, for example.

from threading import Lock

640K should be enough for anyone...
@cached(cache=LRUCache(maxsize=640*1024, getsizeof=len), lock=Lock())
def get_pep(num):
 'Retrieve text of a Python Enhancement Proposal'
 url = 'http://www.python.org/dev/peps/pep-%04d/' % num
 with urllib.request.urlopen(url) as s:
 return s.read()

make sure access to cache is synchronized
with get_pep.cache_lock:
 get_pep.cache.clear()

always use the key function for accessing cache items
with get_pep.cache_lock:
 get_pep.cache.pop(get_pep.cache_key(42), None)

For the common use case of clearing or invalidating the cache, the
decorator also provides a cache_clear() function which
takes care of locking automatically, if needed:

no need for get_pep.cache_lock here
get_pep.cache_clear()

If info is set to True, the wrapped function is
instrumented with a cache_info() function that returns a
named tuple showing hits, misses, maxsize and currsize, to
help measure the effectiveness of the cache.

Note

Note that this will inflict a - probably minor - performance
penalty, so it has to be explicitly enabled.

>>> @cached(cache=LRUCache(maxsize=32), info=True)
... def get_pep(num):
... url = 'http://www.python.org/dev/peps/pep-%04d/' % num
... with urllib.request.urlopen(url) as s:
... return s.read()

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)

>>> get_pep.cache_info()
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

The original underlying function is accessible through the
__wrapped__ attribute. This can be used for introspection
or for bypassing the cache.

It is also possible to use a single shared cache object with
multiple functions. However, care must be taken that different
cache keys are generated for each function, even for identical
function arguments:

>>> from cachetools.keys import hashkey
>>> from functools import partial

>>> # shared cache for integer sequences
>>> numcache = {}

>>> # compute Fibonacci numbers
>>> @cached(numcache, key=partial(hashkey, 'fib'))
... def fib(n):
... return n if n < 2 else fib(n - 1) + fib(n - 2)

>>> # compute Lucas numbers
>>> @cached(numcache, key=partial(hashkey, 'luc'))
... def luc(n):
... return 2 - n if n < 2 else luc(n - 1) + luc(n - 2)

>>> fib(42)
267914296
>>> luc(42)
599074578
>>> list(sorted(numcache.items()))
[..., (('fib', 42), 267914296), ..., (('luc', 42), 599074578)]

	
@cachetools.cachedmethod(cache, key=cachetools.keys.methodkey, lock=None)

	Decorator to wrap a class or instance method with a memoizing
callable that saves results in a (possibly shared) cache.

The main difference between this and the cached() function
decorator is that cache and lock are not passed objects, but
functions. Both will be called with self (or cls
for class methods) as their sole argument to retrieve the cache or
lock object for the method’s respective instance or class.

Note

As with cached(), the context manager obtained by calling
lock(self) will only guard access to the cache itself. It
is the user’s responsibility to handle concurrent calls to the
underlying wrapped method in a multithreaded environment.

The key function will be called as key(self, *args, **kwargs)
to retrieve a suitable cache key. Note that the default key
function, cachetools.keys.methodkey(), ignores its first
argument, i.e. self. This has mostly historical reasons,
but also ensures that self does not have to be hashable.
You may provide a different key function,
e.g. cachetools.keys.hashkey(), if you need self to
be part of the cache key.

One advantage of cachedmethod() over the cached()
function decorator is that cache properties such as maxsize can
be set at runtime:

class CachedPEPs(object):

 def __init__(self, cachesize):
 self.cache = LRUCache(maxsize=cachesize)

 @cachedmethod(operator.attrgetter('cache'))
 def get(self, num):
 """Retrieve text of a Python Enhancement Proposal"""
 url = 'http://www.python.org/dev/peps/pep-%04d/' % num
 with urllib.request.urlopen(url) as s:
 return s.read()

peps = CachedPEPs(cachesize=10)
print("PEP #1: %s" % peps.get(1))

When using a shared cache for multiple methods, be aware that
different cache keys must be created for each method even when
function arguments are the same, just as with the @cached
decorator:

class CachedReferences(object):

 def __init__(self, cachesize):
 self.cache = LRUCache(maxsize=cachesize)

 @cachedmethod(lambda self: self.cache, key=partial(hashkey, 'pep'))
 def get_pep(self, num):
 """Retrieve text of a Python Enhancement Proposal"""
 url = 'http://www.python.org/dev/peps/pep-%04d/' % num
 with urllib.request.urlopen(url) as s:
 return s.read()

 @cachedmethod(lambda self: self.cache, key=partial(hashkey, 'rfc'))
 def get_rfc(self, num):
 """Retrieve text of an IETF Request for Comments"""
 url = 'https://tools.ietf.org/rfc/rfc%d.txt' % num
 with urllib.request.urlopen(url) as s:
 return s.read()

docs = CachedReferences(cachesize=100)
print("PEP #1: %s" % docs.get_pep(1))
print("RFC #1: %s" % docs.get_rfc(1))

cachetools.keys — Key functions for memoizing decorators

This module provides several functions that can be used as key
functions with the cached() and cachedmethod() decorators:

	
cachetools.keys.hashkey(*args, **kwargs)

	Return a cache key for the specified hashable arguments.

This function returns a tuple instance suitable as a cache
key, provided the positional and keywords arguments are hashable.

	
cachetools.keys.methodkey(self, *args, **kwargs)

	Return a cache key for use with cached methods.

This function is equivalent to hashkey(), but ignores its
first positional argument, i.e. self when used with the
cachedmethod() decorator.

	
cachetools.keys.typedkey(*args, **kwargs)

	Return a typed cache key for the specified hashable arguments.

This function is similar to hashkey(), but arguments of
different types will yield distinct cache keys. For example,
typedkey(3) and typedkey(3.0) will return different
results.

These functions can also be helpful when implementing custom key
functions for handling some non-hashable arguments. For example,
calling the following function with a dictionary as its env argument
will raise a TypeError, since dict is not hashable:

@cached(LRUCache(maxsize=128))
def foo(x, y, z, env={}):
 pass

However, if env always holds only hashable values itself, a custom
key function can be written that handles the env keyword argument
specially:

def envkey(*args, env={}, **kwargs):
 key = hashkey(*args, **kwargs)
 key += tuple(sorted(env.items()))
 return key

The envkey() function can then be used in decorator declarations
like this:

@cached(LRUCache(maxsize=128), key=envkey)
def foo(x, y, z, env={}):
 pass

foo(1, 2, 3, env=dict(a='a', b='b'))

cachetools.func — functools.lru_cache() compatible decorators

To ease migration from (or to) Python 3’s functools.lru_cache(),
this module provides several memoizing function decorators with a
similar API. All these decorators wrap a function with a memoizing
callable that saves up to the maxsize most recent calls, using
different caching strategies. If maxsize is set to None,
the caching strategy is effectively disabled and the cache can grow
without bound.

If the optional argument typed is set to True, function
arguments of different types will be cached separately. For example,
f(3) and f(3.0) will be treated as distinct calls with
distinct results.

If a user_function is specified instead, it must be a callable.
This allows the decorator to be applied directly to a user function,
leaving the maxsize at its default value of 128:

@cachetools.func.lru_cache
def count_vowels(sentence):
 sentence = sentence.casefold()
 return sum(sentence.count(vowel) for vowel in 'aeiou')

The wrapped function is instrumented with a cache_parameters()
function that returns a new dict showing the values for
maxsize and typed. This is for information purposes only.
Mutating the values has no effect.

The wrapped function is also instrumented with cache_info() and
cache_clear() functions to provide information about cache
performance and clear the cache. Please see the
functools.lru_cache() documentation for details. Also note that
all the decorators in this module are thread-safe by default.

	
@cachetools.func.fifo_cache(user_function)

	
@cachetools.func.fifo_cache(maxsize=128, typed=False)

	Decorator that wraps a function with a memoizing callable that
saves up to maxsize results based on a First In First Out
(FIFO) algorithm.

	
@cachetools.func.lfu_cache(user_function)

	
@cachetools.func.lfu_cache(maxsize=128, typed=False)

	Decorator that wraps a function with a memoizing callable that
saves up to maxsize results based on a Least Frequently Used
(LFU) algorithm.

	
@cachetools.func.lru_cache(user_function)

	
@cachetools.func.lru_cache(maxsize=128, typed=False)

	Decorator that wraps a function with a memoizing callable that
saves up to maxsize results based on a Least Recently Used (LRU)
algorithm.

	
@cachetools.func.mru_cache(user_function)

	
@cachetools.func.mru_cache(maxsize=128, typed=False)

	Decorator that wraps a function with a memoizing callable that
saves up to maxsize results based on a Most Recently Used (MRU)
algorithm.

	
@cachetools.func.rr_cache(user_function)

	
@cachetools.func.rr_cache(maxsize=128, choice=random.choice, typed=False)

	Decorator that wraps a function with a memoizing callable that
saves up to maxsize results based on a Random Replacement (RR)
algorithm.

	
@cachetools.func.ttl_cache(user_function)

	
@cachetools.func.ttl_cache(maxsize=128, ttl=600, timer=time.monotonic, typed=False)

	Decorator to wrap a function with a memoizing callable that saves
up to maxsize results based on a Least Recently Used (LRU)
algorithm with a per-item time-to-live (TTL) value.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cachetools	

 	
 	
 cachetools.func	

 	
 	
 cachetools.keys	

Index

 C
 | E
 | F
 | G
 | H
 | L
 | M
 | P
 | R
 | T

C

 	
 	Cache (class in cachetools)

 	cached() (in module cachetools)

 	cachedmethod() (in module cachetools)

 	cachetools (module)

 	
 	cachetools.func (module)

 	cachetools.keys (module)

 	choice (cachetools.RRCache attribute)

 	currsize (cachetools.Cache attribute)

E

 	
 	expire() (cachetools.TLRUCache method)

 	(cachetools.TTLCache method)

F

 	
 	fifo_cache() (in module cachetools.func)

 	
 	FIFOCache (class in cachetools)

G

 	
 	getsizeof() (cachetools.Cache static method)

H

 	
 	hashkey() (in module cachetools.keys)

L

 	
 	lfu_cache() (in module cachetools.func)

 	LFUCache (class in cachetools)

 	
 	lru_cache() (in module cachetools.func)

 	LRUCache (class in cachetools)

M

 	
 	maxsize (cachetools.Cache attribute)

 	methodkey() (in module cachetools.keys)

 	
 	mru_cache() (in module cachetools.func)

 	MRUCache (class in cachetools)

P

 	
 	popitem() (cachetools.FIFOCache method)

 	(cachetools.LFUCache method)

 	(cachetools.LRUCache method)

 	(cachetools.MRUCache method)

 	(cachetools.RRCache method)

 	(cachetools.TLRUCache method)

 	(cachetools.TTLCache method)

R

 	
 	rr_cache() (in module cachetools.func)

 	
 	RRCache (class in cachetools)

T

 	
 	timer (cachetools.TLRUCache attribute)

 	(cachetools.TTLCache attribute)

 	TLRUCache (class in cachetools)

 	ttl (cachetools.TTLCache attribute)

 	
 	ttl_cache() (in module cachetools.func)

 	TTLCache (class in cachetools)

 	ttu (cachetools.TLRUCache attribute)

 	typedkey() (in module cachetools.keys)

 nav.xhtml

 Table of Contents

 		
 cachetools — Extensible memoizing collections and decorators

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

